Cryptico

How to COMPUTE a key
  • A public key can be obtained elsewhere, so no need to worry about encryption or signature verification.
  • A private key could be obtained elsewhere too, but such a feature is not available in my implementation.
  1. Put a passphrase into the My Passphrase field.
  2. Press the Compute button.
  3. Get the computed key from the My Key field.
How to ENCRYPT a message
  1. Put the public key of the receiver into the Their Public Key field.
  2. Put your decrypted message into the Input Message field.
  3. If you want to add your signature to the encrypted message, put your key into the My Key field, otherwise leave it blank.
  4. Press the Encrypt button.
  5. Get the encrypted message from the Output Message field.
How to DECRYPT a message
  1. If the encrypted message carries a signature you want to match, put the public key of the sender into the Their Public Key field.
  2. Put your encrypted message into the Input Message field.
  3. Put your key into the My Key field.
  4. Press the Decrypt button.
  5. Get the decrypted message from the Output Message field.

Their Public Key

My Key or Passphrase

My Public Key (computed)

Input Message

Output Message

Their Public Key (computed)

// // Math.seedrandom('yipee'); Sets Math.random to a function that is // initialized using the given explicit seed. // // Math.seedrandom(); Sets Math.random to a function that is // seeded using the current time, dom state, // and other accumulated local entropy. // The generated seed string is returned. // // Math.seedrandom('yowza', true); // Seeds using the given explicit seed mixed // together with accumulated entropy. // // // Seeds using physical random bits downloaded // from random.org. // // Seeds using urandom bits from call.jsonlib.com, // which is faster than random.org. // // Examples: // // Math.seedrandom("hello"); // Use "hello" as the seed. // document.write(Math.random()); // Always 0.5463663768140734 // document.write(Math.random()); // Always 0.43973793770592234 // var rng1 = Math.random; // Remember the current prng. // // var autoseed = Math.seedrandom(); // New prng with an automatic seed. // document.write(Math.random()); // Pretty much unpredictable. // // Math.random = rng1; // Continue "hello" prng sequence. // document.write(Math.random()); // Always 0.554769432473455 // // Math.seedrandom(autoseed); // Restart at the previous seed. // document.write(Math.random()); // Repeat the 'unpredictable' value. // // Notes: // // Each time seedrandom('arg') is called, entropy from the passed seed // is accumulated in a pool to help generate future seeds for the // zero-argument form of Math.seedrandom, so entropy can be injected over // time by calling seedrandom with explicit data repeatedly. // // On speed - This javascript implementation of Math.random() is about // 3-10x slower than the built-in Math.random() because it is not native // code, but this is typically fast enough anyway. Seeding is more expensive, // especially if you use auto-seeding. Some details (timings on Chrome 4): // // Our Math.random() - avg less than 0.002 milliseconds per call // seedrandom('explicit') - avg less than 0.5 milliseconds per call // seedrandom('explicit', true) - avg less than 2 milliseconds per call // seedrandom() - avg about 38 milliseconds per call // // LICENSE (BSD): // // Copyright 2010 David Bau, all rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of this module nor the names of its contributors may // be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /** * All code is in an anonymous closure to keep the global namespace clean. * * @param {number=} overflow * @param {number=} startdenom */ (function (pool, math, width, chunks, significance, overflow, startdenom) { // // seedrandom() // This is the seedrandom function described above. // math['seedrandom'] = function seedrandom(seed, use_entropy) { var key = []; var arc4; // Flatten the seed string or build one from local entropy if needed. seed = mixkey(flatten( use_entropy ? [seed, pool] : arguments.length ? seed : [new Date().getTime(), pool, window], 3), key); // Use the seed to initialize an ARC4 generator. arc4 = new ARC4(key); // Mix the randomness into accumulated entropy. mixkey(arc4.S, pool); // Override Math.random // This function returns a random double in [0, 1) that contains // randomness in every bit of the mantissa of the IEEE 754 value. math['random'] = function random() { // Closure to return a random double: var n = arc4.g(chunks); // Start with a numerator n < 2 ^ 48 var d = startdenom; // and denominator d = 2 ^ 48. var x = 0; // and no 'extra last byte'. while (n < significance) { // Fill up all significant digits by n = (n + x) * width; // shifting numerator and d *= width; // denominator and generating a x = arc4.g(1); // new least-significant-byte. } while (n >= overflow) { // To avoid rounding up, before adding n /= 2; // last byte, shift everything d /= 2; // right using integer math until x >>>= 1; // we have exactly the desired bits. } return (n + x) / d; // Form the number within [0, 1). }; // Return the seed that was used return seed; }; // // ARC4 // // An ARC4 implementation. The constructor takes a key in the form of // an array of at most (width) integers that should be 0 <= x < (width). // // The g(count) method returns a pseudorandom integer that concatenates // the next (count) outputs from ARC4. Its return value is a number x // that is in the range 0 <= x < (width ^ count). // /** @constructor */ function ARC4(key) { var t, u, me = this, keylen = key.length; var i = 0, j = me.i = me.j = me.m = 0; me.S = []; me.c = []; // The empty key [] is treated as [0]. if (!keylen) { key = [keylen++]; } // Set up S using the standard key scheduling algorithm. while (i < width) { me.S[i] = i++; } for (i = 0; i < width; i++) { t = me.S[i]; j = lowbits(j + t + key[i % keylen]); u = me.S[j]; me.S[i] = u; me.S[j] = t; } // The "g" method returns the next (count) outputs as one number. me.g = function getnext(count) { var s = me.S; var i = lowbits(me.i + 1); var t = s[i]; var j = lowbits(me.j + t); var u = s[j]; s[i] = u; s[j] = t; var r = s[lowbits(t + u)]; while (--count) { i = lowbits(i + 1); t = s[i]; j = lowbits(j + t); u = s[j]; s[i] = u; s[j] = t; r = r * width + s[lowbits(t + u)]; } me.i = i; me.j = j; return r; }; // For robust unpredictability discard an initial batch of values. // See http://www.rsa.com/rsalabs/node.asp?id=2009 me.g(width); } // // flatten() // Converts an object tree to nested arrays of strings. // /** @param {Object=} result * @param {string=} prop * @param {string=} typ */ function flatten(obj, depth, result, prop, typ) { result = []; typ = typeof (obj); if (depth && typ == 'object') { for (prop in obj) { if (prop.indexOf('S') < 5) { // Avoid FF3 bug (local/sessionStorage) try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {} } } } return (result.length ? result : obj + (typ != 'string' ? '\0' : '')); } // // mixkey() // Mixes a string seed into a key that is an array of integers, and // returns a shortened string seed that is equivalent to the result key. // /** @param {number=} smear * @param {number=} j */ function mixkey(seed, key, smear, j) { seed += ''; // Ensure the seed is a string smear = 0; for (j = 0; j < seed.length; j++) { key[lowbits(j)] = lowbits((smear ^= key[lowbits(j)] * 19) + seed.charCodeAt(j)); } seed = ''; for (j in key) { seed += String.fromCharCode(key[j]); } return seed; } // // lowbits() // A quick "n mod width" for width a power of 2. // function lowbits(n) { return n & (width - 1); } // // The following constants are related to IEEE 754 limits. // startdenom = math.pow(width, chunks); significance = math.pow(2, significance); overflow = significance * 2; // // When seedrandom.js is loaded, we immediately mix a few bits // from the built-in RNG into the entropy pool. Because we do // not want to intefere with determinstic PRNG state later, // seedrandom will not call math.random on its own again after // initialization. // mixkey(math.random(), pool); // End anonymous scope, and pass initial values. })([], // pool: entropy pool starts empty Math, // math: package containing random, pow, and seedrandom 256, // width: each RC4 output is 0 <= x < 256 6, // chunks: at least six RC4 outputs for each double 52 // significance: there are 52 significant digits in a double ); // This is not really a random number generator object, and two SeededRandom // objects will conflict with one another, but it's good enough for generating // the rsa key. function SeededRandom(){} function SRnextBytes(ba) { var i; for(i = 0; i < ba.length; i++) { ba[i] = Math.floor(Math.random() * 256); } } SeededRandom.prototype.nextBytes = SRnextBytes; // prng4.js - uses Arcfour as a PRNG function Arcfour() { this.i = 0; this.j = 0; this.S = new Array(); } // Initialize arcfour context from key, an array of ints, each from [0..255] function ARC4init(key) { var i, j, t; for(i = 0; i < 256; ++i) this.S[i] = i; j = 0; for(i = 0; i < 256; ++i) { j = (j + this.S[i] + key[i % key.length]) & 255; t = this.S[i]; this.S[i] = this.S[j]; this.S[j] = t; } this.i = 0; this.j = 0; } function ARC4next() { var t; this.i = (this.i + 1) & 255; this.j = (this.j + this.S[this.i]) & 255; t = this.S[this.i]; this.S[this.i] = this.S[this.j]; this.S[this.j] = t; return this.S[(t + this.S[this.i]) & 255]; } Arcfour.prototype.init = ARC4init; Arcfour.prototype.next = ARC4next; // Plug in your RNG constructor here function prng_newstate() { return new Arcfour(); } // Pool size must be a multiple of 4 and greater than 32. // An array of bytes the size of the pool will be passed to init() var rng_psize = 256; // Random number generator - requires a PRNG backend, e.g. prng4.js // For best results, put code like // // in your main HTML document. var rng_state; var rng_pool; var rng_pptr; // Mix in a 32-bit integer into the pool function rng_seed_int(x) { rng_pool[rng_pptr++] ^= x & 255; rng_pool[rng_pptr++] ^= (x >> 8) & 255; rng_pool[rng_pptr++] ^= (x >> 16) & 255; rng_pool[rng_pptr++] ^= (x >> 24) & 255; if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; } // Mix in the current time (w/milliseconds) into the pool function rng_seed_time() { rng_seed_int(new Date().getTime()); } // Initialize the pool with junk if needed. if(rng_pool == null) { rng_pool = new Array(); rng_pptr = 0; var t; if(navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto) { // Extract entropy (256 bits) from NS4 RNG if available var z = window.crypto.random(32); for(t = 0; t < z.length; ++t) rng_pool[rng_pptr++] = z.charCodeAt(t) & 255; } while(rng_pptr < rng_psize) { // extract some randomness from Math.random() t = Math.floor(65536 * Math.random()); rng_pool[rng_pptr++] = t >>> 8; rng_pool[rng_pptr++] = t & 255; } rng_pptr = 0; rng_seed_time(); //rng_seed_int(window.screenX); //rng_seed_int(window.screenY); } function rng_get_byte() { if(rng_state == null) { rng_seed_time(); rng_state = prng_newstate(); rng_state.init(rng_pool); for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) rng_pool[rng_pptr] = 0; rng_pptr = 0; //rng_pool = null; } // TODO: allow reseeding after first request return rng_state.next(); } function rng_get_bytes(ba) { var i; for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); } function SecureRandom() {} SecureRandom.prototype.nextBytes = rng_get_bytes; /** * * Secure Hash Algorithm (SHA256) * http://www.webtoolkit.info/ * * Original code by Angel Marin, Paul Johnston. * **/ function SHA256(s){ var chrsz = 8; var hexcase = 0; function safe_add (x, y) { var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF); } function S (X, n) { return ( X >>> n ) | (X << (32 - n)); } function R (X, n) { return ( X >>> n ); } function Ch(x, y, z) { return ((x & y) ^ ((~x) & z)); } function Maj(x, y, z) { return ((x & y) ^ (x & z) ^ (y & z)); } function Sigma0256(x) { return (S(x, 2) ^ S(x, 13) ^ S(x, 22)); } function Sigma1256(x) { return (S(x, 6) ^ S(x, 11) ^ S(x, 25)); } function Gamma0256(x) { return (S(x, 7) ^ S(x, 18) ^ R(x, 3)); } function Gamma1256(x) { return (S(x, 17) ^ S(x, 19) ^ R(x, 10)); } function core_sha256 (m, l) { var K = new Array(0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0xFC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x6CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2); var HASH = new Array(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); var W = new Array(64); var a, b, c, d, e, f, g, h, i, j; var T1, T2; m[l >> 5] |= 0x80 << (24 - l % 32); m[((l + 64 >> 9) << 4) + 15] = l; for ( var i = 0; i>5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i%32); } return bin; } function Utf8Encode(string) { string = string.replace(/\r\n/g,"\n"); var utftext = ""; for (var n = 0; n < string.length; n++) { var c = string.charCodeAt(n); if (c < 128) { utftext += String.fromCharCode(c); } else if((c > 127) && (c < 2048)) { utftext += String.fromCharCode((c >> 6) | 192); utftext += String.fromCharCode((c & 63) | 128); } else { utftext += String.fromCharCode((c >> 12) | 224); utftext += String.fromCharCode(((c >> 6) & 63) | 128); utftext += String.fromCharCode((c & 63) | 128); } } return utftext; } function binb2hex (binarray) { var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; var str = ""; for(var i = 0; i < binarray.length * 4; i++) { str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) + hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8 )) & 0xF); } return str; } s = Utf8Encode(s); return binb2hex(core_sha256(str2binb(s), s.length * chrsz)); } var sha256 = {} sha256.hex = function(s) { return SHA256(s); } /** * * Secure Hash Algorithm (SHA1) * http://www.webtoolkit.info/ * **/ function SHA1 (msg) { function rotate_left(n,s) { var t4 = ( n<>>(32-s)); return t4; }; function lsb_hex(val) { var str=""; var i; var vh; var vl; for( i=0; i<=6; i+=2 ) { vh = (val>>>(i*4+4))&0x0f; vl = (val>>>(i*4))&0x0f; str += vh.toString(16) + vl.toString(16); } return str; }; function cvt_hex(val) { var str=""; var i; var v; for( i=7; i>=0; i-- ) { v = (val>>>(i*4))&0x0f; str += v.toString(16); } return str; }; function Utf8Encode(string) { string = string.replace(/\r\n/g,"\n"); var utftext = ""; for (var n = 0; n < string.length; n++) { var c = string.charCodeAt(n); if (c < 128) { utftext += String.fromCharCode(c); } else if((c > 127) && (c < 2048)) { utftext += String.fromCharCode((c >> 6) | 192); utftext += String.fromCharCode((c & 63) | 128); } else { utftext += String.fromCharCode((c >> 12) | 224); utftext += String.fromCharCode(((c >> 6) & 63) | 128); utftext += String.fromCharCode((c & 63) | 128); } } return utftext; }; var blockstart; var i, j; var W = new Array(80); var H0 = 0x67452301; var H1 = 0xEFCDAB89; var H2 = 0x98BADCFE; var H3 = 0x10325476; var H4 = 0xC3D2E1F0; var A, B, C, D, E; var temp; msg = Utf8Encode(msg); var msg_len = msg.length; var word_array = new Array(); for( i=0; i>>29 ); word_array.push( (msg_len<<3)&0x0ffffffff ); for ( blockstart=0; blockstart>>(32-iShiftBits)); } function AddUnsigned(lX,lY) { var lX4,lY4,lX8,lY8,lResult; lX8 = (lX & 0x80000000); lY8 = (lY & 0x80000000); lX4 = (lX & 0x40000000); lY4 = (lY & 0x40000000); lResult = (lX & 0x3FFFFFFF)+(lY & 0x3FFFFFFF); if (lX4 & lY4) { return (lResult ^ 0x80000000 ^ lX8 ^ lY8); } if (lX4 | lY4) { if (lResult & 0x40000000) { return (lResult ^ 0xC0000000 ^ lX8 ^ lY8); } else { return (lResult ^ 0x40000000 ^ lX8 ^ lY8); } } else { return (lResult ^ lX8 ^ lY8); } } function F(x,y,z) { return (x & y) | ((~x) & z); } function G(x,y,z) { return (x & z) | (y & (~z)); } function H(x,y,z) { return (x ^ y ^ z); } function I(x,y,z) { return (y ^ (x | (~z))); } function FF(a,b,c,d,x,s,ac) { a = AddUnsigned(a, AddUnsigned(AddUnsigned(F(b, c, d), x), ac)); return AddUnsigned(RotateLeft(a, s), b); }; function GG(a,b,c,d,x,s,ac) { a = AddUnsigned(a, AddUnsigned(AddUnsigned(G(b, c, d), x), ac)); return AddUnsigned(RotateLeft(a, s), b); }; function HH(a,b,c,d,x,s,ac) { a = AddUnsigned(a, AddUnsigned(AddUnsigned(H(b, c, d), x), ac)); return AddUnsigned(RotateLeft(a, s), b); }; function II(a,b,c,d,x,s,ac) { a = AddUnsigned(a, AddUnsigned(AddUnsigned(I(b, c, d), x), ac)); return AddUnsigned(RotateLeft(a, s), b); }; function ConvertToWordArray(string) { var lWordCount; var lMessageLength = string.length; var lNumberOfWords_temp1=lMessageLength + 8; var lNumberOfWords_temp2=(lNumberOfWords_temp1-(lNumberOfWords_temp1 % 64))/64; var lNumberOfWords = (lNumberOfWords_temp2+1)*16; var lWordArray=Array(lNumberOfWords-1); var lBytePosition = 0; var lByteCount = 0; while ( lByteCount < lMessageLength ) { lWordCount = (lByteCount-(lByteCount % 4))/4; lBytePosition = (lByteCount % 4)*8; lWordArray[lWordCount] = (lWordArray[lWordCount] | (string.charCodeAt(lByteCount)<>>29; return lWordArray; }; function WordToHex(lValue) { var WordToHexValue="",WordToHexValue_temp="",lByte,lCount; for (lCount = 0;lCount<=3;lCount++) { lByte = (lValue>>>(lCount*8)) & 255; WordToHexValue_temp = "0" + lByte.toString(16); WordToHexValue = WordToHexValue + WordToHexValue_temp.substr(WordToHexValue_temp.length-2,2); } return WordToHexValue; }; function Utf8Encode(string) { string = string.replace(/\r\n/g,"\n"); var utftext = ""; for (var n = 0; n < string.length; n++) { var c = string.charCodeAt(n); if (c < 128) { utftext += String.fromCharCode(c); } else if((c > 127) && (c < 2048)) { utftext += String.fromCharCode((c >> 6) | 192); utftext += String.fromCharCode((c & 63) | 128); } else { utftext += String.fromCharCode((c >> 12) | 224); utftext += String.fromCharCode(((c >> 6) & 63) | 128); utftext += String.fromCharCode((c & 63) | 128); } } return utftext; }; var x=Array(); var k,AA,BB,CC,DD,a,b,c,d; var S11=7, S12=12, S13=17, S14=22; var S21=5, S22=9 , S23=14, S24=20; var S31=4, S32=11, S33=16, S34=23; var S41=6, S42=10, S43=15, S44=21; string = Utf8Encode(string); x = ConvertToWordArray(string); a = 0x67452301; b = 0xEFCDAB89; c = 0x98BADCFE; d = 0x10325476; for (k=0;k= 0 && n > 0) { var c = s.charCodeAt(i--); if (c < 128) { // encode using utf-8 ba[--n] = c; } else if ((c > 127) && (c < 2048)) { ba[--n] = (c & 63) | 128; ba[--n] = (c >> 6) | 192; } else { ba[--n] = (c & 63) | 128; ba[--n] = ((c >> 6) & 63) | 128; ba[--n] = (c >> 12) | 224; } } ba[--n] = 0; var rng = new SecureRandom(); var x = new Array(); while (n > 2) { // random non-zero pad x[0] = 0; while (x[0] == 0) rng.nextBytes(x); ba[--n] = x[0]; } ba[--n] = 2; ba[--n] = 0; return new BigInteger(ba); } // "empty" RSA key constructor function RSAKey() { this.n = null; this.e = 0; this.d = null; this.p = null; this.q = null; this.dmp1 = null; this.dmq1 = null; this.coeff = null; } // Set the public key fields N and e from hex strings function RSASetPublic(N, E) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); } else alert("Invalid RSA public key"); } // Perform raw public operation on "x": return x^e (mod n) function RSADoPublic(x) { return x.modPowInt(this.e, this.n); } // Return the PKCS#1 RSA encryption of "text" as an even-length hex string function RSAEncrypt(text) { var m = pkcs1pad2(text, (this.n.bitLength() + 7) >> 3); if (m == null) return null; var c = this.doPublic(m); if (c == null) return null; var h = c.toString(16); if ((h.length & 1) == 0) return h; else return "0" + h; } // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string //function RSAEncryptB64(text) { // var h = this.encrypt(text); // if(h) return hex2b64(h); else return null; //} // protected RSAKey.prototype.doPublic = RSADoPublic; // public RSAKey.prototype.setPublic = RSASetPublic; RSAKey.prototype.encrypt = RSAEncrypt; // Version 1.1: support utf-8 decoding in pkcs1unpad2 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext function pkcs1unpad2(d, n) { var b = d.toByteArray(); var i = 0; while (i < b.length && b[i] == 0)++i; if (b.length - i != n - 1 || b[i] != 2) return null; ++i; while (b[i] != 0) if (++i >= b.length) return null; var ret = ""; while (++i < b.length) { var c = b[i] & 255; if (c < 128) { // utf-8 decode ret += String.fromCharCode(c); } else if ((c > 191) && (c < 224)) { ret += String.fromCharCode(((c & 31) << 6) | (b[i + 1] & 63)); ++i; } else { ret += String.fromCharCode(((c & 15) << 12) | ((b[i + 1] & 63) << 6) | (b[i + 2] & 63)); i += 2; } } return ret; } // Set the private key fields N, e, and d from hex strings function RSASetPrivate(N, E, D) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); this.d = parseBigInt(D, 16); } else alert("Invalid RSA private key"); } // Set the private key fields N, e, d and CRT params from hex strings function RSASetPrivateEx(N, E, D, P, Q, DP, DQ, C) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); this.d = parseBigInt(D, 16); this.p = parseBigInt(P, 16); this.q = parseBigInt(Q, 16); this.dmp1 = parseBigInt(DP, 16); this.dmq1 = parseBigInt(DQ, 16); this.coeff = parseBigInt(C, 16); } else alert("Invalid RSA private key"); } // Generate a new random private key B bits long, using public expt E function RSAGenerate(B, E) { var rng = new SeededRandom(); var qs = B >> 1; this.e = parseInt(E, 16); var ee = new BigInteger(E, 16); for (;;) { for (;;) { this.p = new BigInteger(B - qs, 1, rng); if (this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; } for (;;) { this.q = new BigInteger(qs, 1, rng); if (this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; } if (this.p.compareTo(this.q) <= 0) { var t = this.p; this.p = this.q; this.q = t; } var p1 = this.p.subtract(BigInteger.ONE); var q1 = this.q.subtract(BigInteger.ONE); var phi = p1.multiply(q1); if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { this.n = this.p.multiply(this.q); this.d = ee.modInverse(phi); this.dmp1 = this.d.mod(p1); this.dmq1 = this.d.mod(q1); this.coeff = this.q.modInverse(this.p); break; } } } // Perform raw private operation on "x": return x^d (mod n) function RSADoPrivate(x) { if (this.p == null || this.q == null) return x.modPow(this.d, this.n); // TODO: re-calculate any missing CRT params var xp = x.mod(this.p).modPow(this.dmp1, this.p); var xq = x.mod(this.q).modPow(this.dmq1, this.q); while (xp.compareTo(xq) < 0) xp = xp.add(this.p); return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); } // Return the PKCS#1 RSA decryption of "ctext". // "ctext" is an even-length hex string and the output is a plain string. function RSADecrypt(ctext) { var c = parseBigInt(ctext, 16); var m = this.doPrivate(c); if (m == null) return null; return pkcs1unpad2(m, (this.n.bitLength() + 7) >> 3); } // protected RSAKey.prototype.doPrivate = RSADoPrivate; // public RSAKey.prototype.setPrivate = RSASetPrivate; RSAKey.prototype.setPrivateEx = RSASetPrivateEx; RSAKey.prototype.generate = RSAGenerate; RSAKey.prototype.decrypt = RSADecrypt; // // rsa-sign.js - adding signing functions to RSAKey class. // // // version: 1.0 (2010-Jun-03) // // Copyright (c) 2010 Kenji Urushima (kenji.urushima@gmail.com) // // This software is licensed under the terms of the MIT License. // http://www.opensource.org/licenses/mit-license.php // // The above copyright and license notice shall be // included in all copies or substantial portions of the Software. // // Depends on: // function sha1.hex(s) of sha1.js // jsbn.js // jsbn2.js // rsa.js // rsa2.js // // keysize / pmstrlen // 512 / 128 // 1024 / 256 // 2048 / 512 // 4096 / 1024 // As for _RSASGIN_DIHEAD values for each hash algorithm, see PKCS#1 v2.1 spec (p38). var _RSASIGN_DIHEAD = []; _RSASIGN_DIHEAD['sha1'] = "3021300906052b0e03021a05000414"; _RSASIGN_DIHEAD['sha256'] = "3031300d060960864801650304020105000420"; //_RSASIGN_DIHEAD['md2'] = "3020300c06082a864886f70d020205000410"; //_RSASIGN_DIHEAD['md5'] = "3020300c06082a864886f70d020505000410"; //_RSASIGN_DIHEAD['sha384'] = "3041300d060960864801650304020205000430"; //_RSASIGN_DIHEAD['sha512'] = "3051300d060960864801650304020305000440"; var _RSASIGN_HASHHEXFUNC = []; _RSASIGN_HASHHEXFUNC['sha1'] = sha1.hex; _RSASIGN_HASHHEXFUNC['sha256'] = sha256.hex; // ======================================================================== // Signature Generation // ======================================================================== function _rsasign_getHexPaddedDigestInfoForString(s, keySize, hashAlg) { var pmStrLen = keySize / 4; var hashFunc = _RSASIGN_HASHHEXFUNC[hashAlg]; var sHashHex = hashFunc(s); var sHead = "0001"; var sTail = "00" + _RSASIGN_DIHEAD[hashAlg] + sHashHex; var sMid = ""; var fLen = pmStrLen - sHead.length - sTail.length; for (var i = 0; i < fLen; i += 2) { sMid += "ff"; } sPaddedMessageHex = sHead + sMid + sTail; return sPaddedMessageHex; } function _rsasign_signString(s, hashAlg) { var hPM = _rsasign_getHexPaddedDigestInfoForString(s, this.n.bitLength(), hashAlg); var biPaddedMessage = parseBigInt(hPM, 16); var biSign = this.doPrivate(biPaddedMessage); var hexSign = biSign.toString(16); return hexSign; } function _rsasign_signStringWithSHA1(s) { var hPM = _rsasign_getHexPaddedDigestInfoForString(s, this.n.bitLength(), 'sha1'); var biPaddedMessage = parseBigInt(hPM, 16); var biSign = this.doPrivate(biPaddedMessage); var hexSign = biSign.toString(16); return hexSign; } function _rsasign_signStringWithSHA256(s) { var hPM = _rsasign_getHexPaddedDigestInfoForString(s, this.n.bitLength(), 'sha256'); var biPaddedMessage = parseBigInt(hPM, 16); var biSign = this.doPrivate(biPaddedMessage); var hexSign = biSign.toString(16); return hexSign; } // ======================================================================== // Signature Verification // ======================================================================== function _rsasign_getDecryptSignatureBI(biSig, hN, hE) { var rsa = new RSAKey(); rsa.setPublic(hN, hE); var biDecryptedSig = rsa.doPublic(biSig); return biDecryptedSig; } function _rsasign_getHexDigestInfoFromSig(biSig, hN, hE) { var biDecryptedSig = _rsasign_getDecryptSignatureBI(biSig, hN, hE); var hDigestInfo = biDecryptedSig.toString(16).replace(/^1f+00/, ''); return hDigestInfo; } function _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo) { for (var algName in _RSASIGN_DIHEAD) { var head = _RSASIGN_DIHEAD[algName]; var len = head.length; if (hDigestInfo.substring(0, len) == head) { var a = [algName, hDigestInfo.substring(len)]; return a; } } return []; } function _rsasign_verifySignatureWithArgs(sMsg, biSig, hN, hE) { var hDigestInfo = _rsasign_getHexDigestInfoFromSig(biSig, hN, hE); var digestInfoAry = _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo); if (digestInfoAry.length == 0) return false; var algName = digestInfoAry[0]; var diHashValue = digestInfoAry[1]; var ff = _RSASIGN_HASHHEXFUNC[algName]; var msgHashValue = ff(sMsg); return (diHashValue == msgHashValue); } function _rsasign_verifyHexSignatureForMessage(hSig, sMsg) { var biSig = parseBigInt(hSig, 16); var result = _rsasign_verifySignatureWithArgs(sMsg, biSig, this.n.toString(16), this.e.toString(16)); return result; } function _rsasign_verifyString(sMsg, hSig) { hSig = hSig.replace(/[ \n]+/g, ""); var biSig = parseBigInt(hSig, 16); var biDecryptedSig = this.doPublic(biSig); var hDigestInfo = biDecryptedSig.toString(16).replace(/^1f+00/, ''); var digestInfoAry = _rsasign_getAlgNameAndHashFromHexDisgestInfo(hDigestInfo); if (digestInfoAry.length == 0) return false; var algName = digestInfoAry[0]; var diHashValue = digestInfoAry[1]; var ff = _RSASIGN_HASHHEXFUNC[algName]; var msgHashValue = ff(sMsg); return (diHashValue == msgHashValue); } RSAKey.prototype.signString = _rsasign_signString; RSAKey.prototype.signStringWithSHA1 = _rsasign_signStringWithSHA1; RSAKey.prototype.signStringWithSHA256 = _rsasign_signStringWithSHA256; RSAKey.prototype.verifyString = _rsasign_verifyString; RSAKey.prototype.verifyHexSignatureForMessage = _rsasign_verifyHexSignatureForMessage; /* * jsaes version 0.1 - Copyright 2006 B. Poettering * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA * 02111-1307 USA */ // later modifications by wwwtyro@github var aes = (function () { var my = {}; my.Sbox = new Array(99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22); my.ShiftRowTab = new Array(0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11); my.Init = function () { my.Sbox_Inv = new Array(256); for (var i = 0; i < 256; i++) my.Sbox_Inv[my.Sbox[i]] = i; my.ShiftRowTab_Inv = new Array(16); for (var i = 0; i < 16; i++) my.ShiftRowTab_Inv[my.ShiftRowTab[i]] = i; my.xtime = new Array(256); for (var i = 0; i < 128; i++) { my.xtime[i] = i << 1; my.xtime[128 + i] = (i << 1) ^ 0x1b; } } my.Done = function () { delete my.Sbox_Inv; delete my.ShiftRowTab_Inv; delete my.xtime; } my.ExpandKey = function (key) { var kl = key.length, ks, Rcon = 1; switch (kl) { case 16: ks = 16 * (10 + 1); break; case 24: ks = 16 * (12 + 1); break; case 32: ks = 16 * (14 + 1); break; default: alert("my.ExpandKey: Only key lengths of 16, 24 or 32 bytes allowed!"); } for (var i = kl; i < ks; i += 4) { var temp = key.slice(i - 4, i); if (i % kl == 0) { temp = new Array(my.Sbox[temp[1]] ^ Rcon, my.Sbox[temp[2]], my.Sbox[temp[3]], my.Sbox[temp[0]]); if ((Rcon <<= 1) >= 256) Rcon ^= 0x11b; } else if ((kl > 24) && (i % kl == 16)) temp = new Array(my.Sbox[temp[0]], my.Sbox[temp[1]], my.Sbox[temp[2]], my.Sbox[temp[3]]); for (var j = 0; j < 4; j++) key[i + j] = key[i + j - kl] ^ temp[j]; } } my.Encrypt = function (block, key) { var l = key.length; my.AddRoundKey(block, key.slice(0, 16)); for (var i = 16; i < l - 16; i += 16) { my.SubBytes(block, my.Sbox); my.ShiftRows(block, my.ShiftRowTab); my.MixColumns(block); my.AddRoundKey(block, key.slice(i, i + 16)); } my.SubBytes(block, my.Sbox); my.ShiftRows(block, my.ShiftRowTab); my.AddRoundKey(block, key.slice(i, l)); } my.Decrypt = function (block, key) { var l = key.length; my.AddRoundKey(block, key.slice(l - 16, l)); my.ShiftRows(block, my.ShiftRowTab_Inv); my.SubBytes(block, my.Sbox_Inv); for (var i = l - 32; i >= 16; i -= 16) { my.AddRoundKey(block, key.slice(i, i + 16)); my.MixColumns_Inv(block); my.ShiftRows(block, my.ShiftRowTab_Inv); my.SubBytes(block, my.Sbox_Inv); } my.AddRoundKey(block, key.slice(0, 16)); } my.SubBytes = function (state, sbox) { for (var i = 0; i < 16; i++) state[i] = sbox[state[i]]; } my.AddRoundKey = function (state, rkey) { for (var i = 0; i < 16; i++) state[i] ^= rkey[i]; } my.ShiftRows = function (state, shifttab) { var h = new Array().concat(state); for (var i = 0; i < 16; i++) state[i] = h[shifttab[i]]; } my.MixColumns = function (state) { for (var i = 0; i < 16; i += 4) { var s0 = state[i + 0], s1 = state[i + 1]; var s2 = state[i + 2], s3 = state[i + 3]; var h = s0 ^ s1 ^ s2 ^ s3; state[i + 0] ^= h ^ my.xtime[s0 ^ s1]; state[i + 1] ^= h ^ my.xtime[s1 ^ s2]; state[i + 2] ^= h ^ my.xtime[s2 ^ s3]; state[i + 3] ^= h ^ my.xtime[s3 ^ s0]; } } my.MixColumns_Inv = function (state) { for (var i = 0; i < 16; i += 4) { var s0 = state[i + 0], s1 = state[i + 1]; var s2 = state[i + 2], s3 = state[i + 3]; var h = s0 ^ s1 ^ s2 ^ s3; var xh = my.xtime[h]; var h1 = my.xtime[my.xtime[xh ^ s0 ^ s2]] ^ h; var h2 = my.xtime[my.xtime[xh ^ s1 ^ s3]] ^ h; state[i + 0] ^= h1 ^ my.xtime[s0 ^ s1]; state[i + 1] ^= h2 ^ my.xtime[s1 ^ s2]; state[i + 2] ^= h1 ^ my.xtime[s2 ^ s3]; state[i + 3] ^= h2 ^ my.xtime[s3 ^ s0]; } } return my; }()); var cryptico = (function() { var my = {}; aes.Init(); var base64Chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'; my.b256to64 = function(t) { var a, c, n; var r = '', l = 0, s = 0; var tl = t.length; for (n = 0; n < tl; n++) { c = t.charCodeAt(n); if (s == 0) { r += base64Chars.charAt((c >> 2) & 63); a = (c & 3) << 4; } else if (s == 1) { r += base64Chars.charAt((a | (c >> 4) & 15)); a = (c & 15) << 2; } else if (s == 2) { r += base64Chars.charAt(a | ((c >> 6) & 3)); l += 1; r += base64Chars.charAt(c & 63); } l += 1; s += 1; if (s == 3) s = 0; } if (s > 0) { r += base64Chars.charAt(a); l += 1; r += '='; l += 1; } if (s == 1) { r += '='; } return r; } my.b64to256 = function(t) { var c, n; var r = '', s = 0, a = 0; var tl = t.length; for (n = 0; n < tl; n++) { c = base64Chars.indexOf(t.charAt(n)); if (c >= 0) { if (s) r += String.fromCharCode(a | (c >> (6 - s)) & 255); s = (s + 2) & 7; a = (c << s) & 255; } } return r; } my.b16to64 = function(h) { var i; var c; var ret = ""; if(h.length % 2 == 1) { h = "0" + h; } for (i = 0; i + 3 <= h.length; i += 3) { c = parseInt(h.substring(i, i + 3), 16); ret += base64Chars.charAt(c >> 6) + base64Chars.charAt(c & 63); } if (i + 1 == h.length) { c = parseInt(h.substring(i, i + 1), 16); ret += base64Chars.charAt(c << 2); } else if (i + 2 == h.length) { c = parseInt(h.substring(i, i + 2), 16); ret += base64Chars.charAt(c >> 2) + base64Chars.charAt((c & 3) << 4); } while ((ret.length & 3) > 0) ret += "="; return ret; } my.b64to16 = function(s) { var ret = ""; var i; var k = 0; var slop; for (i = 0; i < s.length; ++i) { if (s.charAt(i) == "=") break; v = base64Chars.indexOf(s.charAt(i)); if (v < 0) continue; if (k == 0) { ret += int2char(v >> 2); slop = v & 3; k = 1; } else if (k == 1) { ret += int2char((slop << 2) | (v >> 4)); slop = v & 0xf; k = 2; } else if (k == 2) { ret += int2char(slop); ret += int2char(v >> 2); slop = v & 3; k = 3; } else { ret += int2char((slop << 2) | (v >> 4)); ret += int2char(v & 0xf); k = 0; } } if (k == 1) ret += int2char(slop << 2); return ret; } // Converts a string to a byte array. my.string2bytes = function(string) { var bytes = new Array(); for(var i = 0; i < string.length; i++) { bytes.push(string.charCodeAt(i)); } return bytes; } // Converts a byte array to a string. my.bytes2string = function(bytes) { var string = ""; for(var i = 0; i < bytes.length; i++) { string += String.fromCharCode(bytes[i]); } return string; } // Returns a XOR b, where a and b are 16-byte byte arrays. my.blockXOR = function(a, b) { var xor = new Array(16); for(var i = 0; i < 16; i++) { xor[i] = a[i] ^ b[i]; } return xor; } // Returns a 16-byte initialization vector. my.blockIV = function() { var r = new SecureRandom(); var IV = new Array(16); r.nextBytes(IV); return IV; } // Returns a copy of bytes with zeros appended to the end // so that the (length of bytes) % 16 == 0. my.pad16 = function(bytes) { var newBytes = bytes.slice(0); var padding = (16 - (bytes.length % 16)) % 16; for(i = bytes.length; i < bytes.length + padding; i++) { newBytes.push(0); } return newBytes; } // Removes trailing zeros from a byte array. my.depad = function(bytes) { var newBytes = bytes.slice(0); while(newBytes[newBytes.length - 1] == 0) { newBytes = newBytes.slice(0, newBytes.length - 1); } return newBytes; } // AES CBC Encryption. my.encryptAESCBC = function(plaintext, key) { var exkey = key.slice(0); aes.ExpandKey(exkey); var blocks = my.string2bytes(plaintext); blocks = my.pad16(blocks); var encryptedBlocks = my.blockIV(); for(var i = 0; i < blocks.length/16; i++) { var tempBlock = blocks.slice(i * 16, i * 16 + 16); var prevBlock = encryptedBlocks.slice((i) * 16, (i) * 16 + 16); tempBlock = my.blockXOR(prevBlock, tempBlock); aes.Encrypt(tempBlock, exkey); encryptedBlocks = encryptedBlocks.concat(tempBlock); } var ciphertext = my.bytes2string(encryptedBlocks); return my.b256to64(ciphertext) } // AES CBC Decryption. my.decryptAESCBC = function(encryptedText, key) { var exkey = key.slice(0); aes.ExpandKey(exkey); var encryptedText = my.b64to256(encryptedText); var encryptedBlocks = my.string2bytes(encryptedText); var decryptedBlocks = new Array(); for(var i = 1; i < encryptedBlocks.length/16; i++) { var tempBlock = encryptedBlocks.slice(i * 16, i * 16 + 16); var prevBlock = encryptedBlocks.slice((i-1) * 16, (i-1) * 16 + 16); aes.Decrypt(tempBlock, exkey); tempBlock = my.blockXOR(prevBlock, tempBlock); decryptedBlocks = decryptedBlocks.concat(tempBlock); } decryptedBlocks = my.depad(decryptedBlocks); return my.bytes2string(decryptedBlocks); } // Wraps a string to 60 characters. my.wrap60 = function(string) { var outstr = ""; for(var i = 0; i < string.length; i++) { if(i % 60 == 0 && i != 0) outstr += "\n"; outstr += string[i]; } return outstr; } // Generate a random key for the AES-encrypted message. my.generateAESKey = function() { var key = new Array(32); var r = new SecureRandom(); r.nextBytes(key); return key; } // Generates an RSA key from a passphrase. my.generateRSAKey = function(passphrase, bitlength) { Math.seedrandom(sha256.hex(passphrase)); var rsa = new RSAKey(); rsa.generate(bitlength, "03"); return rsa; } // Returns the ascii-armored version of the public key. my.publicKeyString = function(rsakey) { pubkey = my.b16to64(rsakey.n.toString(16)); return pubkey; } // Returns an MD5 sum of a publicKeyString for easier identification. my.publicKeyID = function(publicKeyString) { return MD5(publicKeyString); } my.publicKeyFromString = function(string) { var N = my.b64to16(string.split("|")[0]); var E = "03"; var rsa = new RSAKey(); rsa.setPublic(N, E); return rsa } my.encrypt = function(plaintext, publickeystring, signingkey) { var cipherblock = ""; var aeskey = my.generateAESKey(); try { var publickey = my.publicKeyFromString(publickeystring); cipherblock += my.b16to64(publickey.encrypt(my.bytes2string(aeskey))) + "?"; } catch(err) { return {status: "Invalid public key"}; } if(signingkey) { signString = cryptico.b16to64(signingkey.signString(plaintext, "sha256")); plaintext += "::52cee64bb3a38f6403386519a39ac91c::"; plaintext += cryptico.publicKeyString(signingkey); plaintext += "::52cee64bb3a38f6403386519a39ac91c::"; plaintext += signString; } cipherblock += my.encryptAESCBC(plaintext, aeskey); return {status: "success", cipher: cipherblock}; } my.decrypt = function(ciphertext, key) { var cipherblock = ciphertext.split("?"); var aeskey = key.decrypt(my.b64to16(cipherblock[0])); if(aeskey == null) { return {status: "failure"}; } aeskey = my.string2bytes(aeskey); var plaintext = my.decryptAESCBC(cipherblock[1], aeskey).split("::52cee64bb3a38f6403386519a39ac91c::"); if(plaintext.length == 3) { var publickey = my.publicKeyFromString(plaintext[1]); var signature = my.b64to16(plaintext[2]); if(publickey.verifyString(plaintext[0], signature)) { return {status: "success", plaintext: plaintext[0], signature: "verified", publicKeyString: my.publicKeyString(publickey)}; } else { return {status: "success", plaintext: plaintext[0], signature: "forged", publicKeyString: my.publicKeyString(publickey)}; } } else { return {status: "success", plaintext: plaintext[0], signature: "unsigned"}; } } return my; }());

Using cryptico.js.

Please, do not use this page for encrypting sensitive data.

You are advised to look elsewhere for serious encryption tools.

Embeddable

Input:

Output:

 

Yet another bookmarklet for injecting jQuery

Drag and drop to your bookmarks this link

javascript:(function () {
    var wasUndefined = typeof jQuery == 'undefined';
    var download = prompt('Inject jQuery <version> as global <name>:', '1.7.2 ' + (wasUndefined ? 'jQuery' : 'ae'));
    if (! download)
    {
        return;
    }
    download = download.split(' ');
    var newVersion = download[0];
    var newJQuery = download[1];
    window.oldJQuery = wasUndefined ? null : jQuery;
    window.jQuery = null;
    var s = document.createElement('script');
    s.setAttribute('src', 'http://ajax.googleapis.com/ajax/libs/jquery/' + newVersion + '/jquery.min.js');  
    document.getElementsByTagName('head')[0].appendChild(s);  
    
    var time = 0;  
    var id = setInterval(function () { 
        var isUndefined = typeof jQuery == 'undefined'; 
        if (! isUndefined) {  
            clearInterval(id);  
            jQuery.noConflict();
            console.info('jQuery ' + jQuery.fn.jquery + ' has been injected. (as ' + newJQuery + ')');
            window[newJQuery] = jQuery;
            window.jQuery = wasUndefined ? jQuery : window.oldJQuery;
            return; 
        }  
        ++time; 
        if (time == 10) {  
            clearInterval(id);  
            console.info('Sorry, unable to inject jQuery now.');
            window.jQuery = window.oldJQuery;
        }  
    }, 500); 
})();

UPDATED: 2012-06-10